ECE-223, Solutions for Assignment \#6

Digital Design, M. Mano, $3^{\text {rd }}$ Edition, Chapter 5

5.2) Construct a JK flip-flop using a D Flip-flop, a 2-to-1 line multiplexer and an inverter.

5.4) A PN flip-flop has four operations: clear to 0 , no change, complement, and set to 1 , when inputs P and N are $00,01,10$, and 11 , respectively.
a) Tabulate the characteristic table.
b) Derive the characteristic equation.
c) Tabulate the excitation table.
d) Show how the PN flip-flop can be converted to a D flip-flop.
a)

P	N	$\mathrm{Q}(\mathrm{t}+1)$
0	0	0
0	1	$\mathrm{Q}(\mathrm{t})$
1	0	$\mathrm{Q}^{\prime}(\mathrm{t})$
1	1	1

b)

P	N	$Q(t)$	$Q(t+1)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$P \stackrel{c}{ } \quad \stackrel{c}{c} \mathrm{~N}$

$$
\mathrm{Q}(\mathrm{t}+1)=\mathrm{PQ}^{\prime}+\mathrm{NQ}
$$

c)

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	P	N
0	0	0	X
0	1	1	X
1	0	X	0
1	1	X	1

d) By connecting P and N together.
$\mathrm{Q}(\mathrm{t}+1)=\mathrm{DQ}^{\prime}+\mathrm{DQ}=\mathrm{D}$
5.6) A sequential circuit with two D Flip-Flops, A and B; two inputs, x and y; and one output, z , is specified by the following next-state and output equations:

$$
\begin{aligned}
& A(t+1)=x^{\prime} y+x A \\
& B(t+1)=x^{\prime} B+x A \\
& z=B
\end{aligned}
$$

a) Draw the logic diagram of the circuit.
b) List the state table for the sequential circuit.
c) Draw the corresponding state diagram.

b)

Present State		Inputs		Next State		Output
A	B	x	y	A	B	z
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	1	1
0	1	0	1	1	1	1
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	0	1	1	0	0
1	0	1	0	1	1	0
1	0	1	1	1	1	0
1	1	0	0	0	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

c)

Page: 3
5.12) Reduce the number of states in the following state table and tabulate the reduced state table.

Present State	$\mathrm{x}=0$	$\mathrm{x}=1$	Output	
a	f	b	$\mathrm{x}=0$	0
b	d	$\mathrm{c}=1$		
c	f	e	0	0
d	g	a	0	0
e	d	c	1	0
f	f	b	0	0
g	g	h	1	1
h	g	a	0	1

Present	Next State		Output	
State	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
a	f	b	0	0
b	d	a	0	0
d	g	a	1	0
f	f	b	1	1
g	g	d	0	1

5-16) Design a sequential circuit with two D Flip-Flops, A and B, and one input x. When $x=0$, then the state of the circuit remains the same. When $x=1$, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00 , and repeats.

Present State AB	Input x	Nest State AB
00	0	00
00	1	01
01	0	01
01	1	11
10	0	10
10	1	00
11	0	11
11	1	10

$\mathrm{A} \uparrow$| $\mathrm{A} \mid \mathrm{Bx}$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 |

$\mathrm{D}_{\mathrm{A}}=\mathrm{AX}{ }^{\prime}+\mathrm{BX}$

$$
\mathrm{D}_{\mathrm{B}}=\mathrm{A}^{\prime} \mathrm{X}+\mathrm{BX}^{\prime}
$$

5-17) Design a one input, one output serial 2's complimenter. The circuit accepts a string of bits from the input and generates the 2's compliment at the output. The circuit can be reset asynchronously to start and end the operation.

Solution:
The output is 0 for all 0 inputs until the first 1 occurs at which time, the output is 1 . Thereafter, the output is the complement of the input.

A: starting state

The state diagram has two states
State 0 : Output = Input
State1 : Output = Complement of input

$\begin{gathered} \mathrm{PS} \\ \mathrm{~A} \end{gathered}$	Inp.	$\begin{gathered} \text { NS } \\ \text { A } \end{gathered}$	Out y
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

$D_{A}=A+x$
$y=A \oplus x$

5-19) A sequential circuit has three flip-flops A, B, C; one input x; and one output, y. The state diagram is shown in Fig.P5-19. The circuit is to be designed by treating the unused states as don't-care conditions. Analyze the circuit obtained from the design to determine the effect of the unused states.
a) Use D flip-flops in the design
b) Use J-K flip-flops in the design

Fig.P5-19
a)

Present State			Input				Next State			Cutput
A	B	X	A	C						
0	0	0	0	0	1	1	0			
0	0	0	1	1	0	0	1			
0	0	1	0	0	0	1	0			
0	0	1	1	1	0	0	1			
0	1	0	0	0	1	0	0			
0	1	0	1	0	0	0	1			
0	1	1	0	0	0	1	0			
0	1	1	1	0	1	0	1			
1	0	0	0	0	1	0	0			
1	0	0	1	0	1	1	0			

$D_{A}=A^{\prime} B^{\prime} X$

$\mathrm{D}_{\mathrm{C}}=\mathrm{Ax}+\mathrm{Cx}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{x}^{\prime}$

$\mathrm{D}_{\mathrm{B}}=\mathrm{A}+\mathrm{C}^{\prime} \mathrm{x}^{\prime}+\mathrm{BCx}$

$D_{D}=A^{\prime} x$

Page: 8

b) Use JK flip-flops:

J_{A}	K_{A}	J_{B}	K_{B}	J_{C}	K_{C}
0	X	1	X	1	X
1	X	0	X	0	X
0	X	0	X	X	0
1	X	0	X	X	1
0	X	X	0	0	X
0	X	X	1	0	X
0	X	X	1	X	0
0	X	X	0	X	1
X	1	1	X	0	X
X	1	1	X	1	X

$\mathrm{J}_{\mathrm{A}}=\mathrm{B}^{\prime} \mathrm{x}$	$\mathrm{J}_{\mathrm{B}}=\mathrm{A}+\mathrm{C}^{\prime} \mathrm{x}^{\prime}$	$\mathrm{J}_{\mathrm{C}}=\mathrm{Ax}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{x}^{\prime}$
$\mathrm{K}_{\mathrm{A}}=1$	$\mathrm{~K}_{\mathrm{B}}=\mathrm{C}^{\prime} \mathrm{x}+\mathrm{Cx}^{\prime}$	$\mathrm{K}_{\mathrm{C}}=\mathrm{x}$

Self-correction because $\mathrm{K}_{\mathrm{A}}=1$

5-20) Design the sequential circuit specified by the state diagram of Fig. 5-19 using T flip-flops.

Fig. 5-19
From State table (Table 5-4 from Digital Design, M. Mano, $3{ }^{\text {rd }}$ Edition, pp.186)
$T_{A}(A, B, x)=\sum(2,3,6)$
$\mathrm{T}_{\mathrm{B}}(\mathrm{A}, \mathrm{B}, \mathrm{x})=\sum(0,3,4,6)$

$\mathrm{T}_{\mathrm{B}}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{Bx}^{\prime}$

$T_{A}=A x^{\prime}+B^{\prime} x^{\prime}+A^{\prime} B x$

