ECE-223, Solutions for Assignment #6

Digital Design, M. Mano, 3rd Edition, Chapter 5

5.2) Construct a JK flip-flop using a D Flip-flop, a 2-to-1 line multiplexer and an inverter.

5.4) A PN flip-flop has four operations: clear to 0, no change, complement, and set to 1, when inputs P and N are 00, 01, 10, and 11, respectively.

- a) Tabulate the characteristic table.
- b) Derive the characteristic equation.

b)

- c) Tabulate the excitation table.
- d) Show how the PN flip-flop can be converted to a D flip-flop.

a)		
Р	Ν	Q(t+1)
0	0	0
0	1	Q(t)
1	0	Q'(t)
1	1	1

Р	N	Q(t)	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Q(t+1) = PQ' + NQ

c)

Q(t)	Q(t+1)	Р	Ν
0	0	0	Х
0	1	1	Х
1	0	Х	0
1	1	Х	1

d) By connecting P and N together. Q(t+1) = DQ' + DQ = D

5.6) A sequential circuit with two D Flip-Flops, A and B; two inputs, x and y; and one output, z, is specified by the following next-state and output equations:

$$\begin{split} A(t+1) &= x'y + xA\\ B(t+1) &= x'B + xA\\ z &= B \end{split}$$

a) Draw the logic diagram of the circuit.

b) List the state table for the sequential circuit.

c) Draw the corresponding state diagram.

Presen	t State	Inp	outs	Next	Output	
А	В	Х	У	А	В	Z
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	1	1
0	1	0	1	1	1	1
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	0	1	1	0	0
1	0	1	0	1	1	0
1	0	1	1	1	1	0
1	1	0	0	0	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

c)

b)

Present	Next	State	Out	tput
State	x =0	x =1	x =0	x =1
а	f	b	0	0
b	d	С	0	0
с	f	e	0	0
d	g	а	1	0
e	d	с	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

5.12)	Reduce	the	number	of	states	in	the	following	state	table	and	tabulate	the	reduced
state	table.													

Present	Next	State	Out	tput
State	x =0	x =1	x =0	x =1
а	f	b	0	0
b	d	а	0	0
d	g	а	1	0
f	f	b	1	1
g	g	d	0	1

5-16) Design a sequential circuit with two D Flip-Flops, A and B, and one input x. When x = 0, then the state of the circuit remains the same. When x = 1, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00, and repeats.

Present State	Input	Nest State
AB	Х	AB
00	0	00
00	1	01
01	0	01
01	1	11
10	0	10
10	1	00
11	0	11
11	1	10

5-17) Design a one input, one output serial 2's complimenter. The circuit accepts a string of bits from the input and generates the 2's compliment at the output. The circuit can be reset asynchronously to start and end the operation.

Solution:

The output is 0 for all 0 inputs until the first 1 occurs at which time, the output is 1. Thereafter, the output is the complement of the input.

The state diagram has two states

State 0 :	Output = Input
State1 :	Output = Complement of input

5-19) A sequential circuit has three flip-flops A, B, C; one input x; and one output, y. The state diagram is shown in Fig.P5-19. The circuit is to be designed by treating the unused states as don't-care conditions. Analyze the circuit obtained from the design to determine the effect of the unused states.

- a) Use D flip-flops in the design
- b) Use J-K flip-flops in the design

Fig.P5-19

]	Present State	e	Input		Next State		Output
А	В	С	Х	А	В	С	У
0	0	0	0	0	1	1	0
0	0	0	1	1	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	1
0	1	0	0	0	1	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	1	0	1
1	0	0	0	0	1	0	0
1	0	0	1	0	1	1	0

 $\mathbf{D}_{\mathbf{B}}^{=} \mathbf{A} + \mathbf{C'x'} + \mathbf{B}\mathbf{C}\mathbf{x}$

 $D_D = A'x$

 $\mathbf{D}_{\mathbf{A}}{=}\mathbf{A'}\mathbf{B'}\mathbf{X}$

 $\mathbf{D}_{\mathbf{C}} = \mathbf{A}\mathbf{x} + \mathbf{C}\mathbf{x'} + \mathbf{A'}\mathbf{B'}\mathbf{x'}$

b) Use JK flip-flops:

J_{A}	K _A	$J_{\rm B}$	K _B	J_{C}	K _C
0	Х	1	Х	1	Х
1	Х	0	Х	0	Х
0	Х	0	Х	Х	0
1	Х	0	Х	Х	1
0	Х	Х	0	0	Х
0	Х	Х	1	0	Х
0	Х	Х	1	Х	0
0	Х	Х	0	Х	1
Х	1	1	Х	0	Х
Х	1	1	Х	1	Х

$J_A = B'x$	$J_B = A + C'x'$	$J_C = Ax + A'B'x'$
$K_A = 1$	$K_B = C'x + Cx'$	$K_{C} = x$

Self-correction because $K_A = 1$

5-20) Design the sequential circuit specified by the state diagram of Fig. 5-19 using T flip-flops.

Fig. 5-19

From State table (Table 5-4 from Digital Design, M. Mano, 3rd Edition, pp.186)

10